The Indian River Lagoon, a shallow estuary that stretches for 156 miles along Florida's eastern coast, is suffering from the activities of human society. Poor water quality and toxic algal blooms have resulted in fish kills, manatee and dolphin die-offs and takeovers by invasive species. But the humans who live here have needs, too: the eastern side of the lagoon is buffered by a stretch of barrier islands that are critical to Florida's economy, tourism and agriculture, as well as for launching NASA missions into space.
As in Florida, many of the world's coastlines are in serious trouble as a result of population growth and the pollution it produces. Moreover, the effects of climate change are accelerating both environmental and economic decline. Given what is at risk, scientists like us—a biologist and a chemist at the University of Central Florida—feel an urgent need to do research that can inform policy that will increase the resiliency and sustainability of coastal communities. How can our research best help balance environmental and social needs within the confines of our political and economic systems? This is the level of complexity that scientists must enter into instead of shying away from.
Although new technologies will surely play a role in tackling issues such as climate change, rising seas and coastal flooding, we cannot rely on innovation alone. Technology generally does not take into consideration the complex interactions between people and the environment. That is why coming up with solutions will require scientists to engage in an interdisciplinary team approach—something that is common in the business world but is relatively rare in universities.
Universities are a tremendous source of intellectual power, of course. But students and faculty are typically organized within departments, or academic silos. Scientists are trained in the tools and language of their respective disciplines and learn to communicate their findings to one another using specific jargon.
When the goal of research is a fundamental understanding of a physical or biological system within a niche community, this setup makes a lot of sense. But when the problem the research is trying to solve extends beyond a closed system and includes its effects on society, silos create a variety of barriers. They can limit creativity, flexibility and nimbleness and actually discourage scientists from working across disciplines. As professors, we tend to train our students in our own image, inadvertently producing specialists who have difficulty communicating with the scientist in the next building—let alone with the broader public. This makes research silos ineffective at responding to developing issues in policy and planning, such as how coastal communities and ecosystems worldwide will adapt to rising seas.
Science for the Bigger Picture
As scientists who live and work in Florida, we realized that we needed to play a bigger role in helping our state—and country—make evidence-based choices when it comes to vulnerable coastlines. We wanted to make a more comprehensive assessment of both natural and human-related impacts to the health, restoration and sustainability of our coastal systems and to conduct long-term, integrated research.
At first, we focused on expanding research capacity in our biology, chemistry and engineering programs because each already had a strong coastal research presence. Then, our university announced a Faculty Cluster Initiative, with a goal of developing interdisciplinary academic teams focused on solving tomorrow's most challenging societal problems. While putting together our proposal, we discovered that there were already 35 faculty members on the Orlando campus who studied coastal issues. They belonged to 12 departments in seven colleges, and many of them had never even met. It became clear that simply working on the same campus was insufficient for collaboration.
So we set out to build a team of people from a wide mix of backgrounds who would work in close proximity to one another on a daily basis. These core members would also serve as a link to the disciplinary strengths of their tenure home departments. Initially, finding experts who truly wanted to embrace the team aspect was more difficult than we thought. Although the notion of interdisciplinary research is not new, it has not always been encouraged in academia. Some faculty who go in that direction still worry about whether it will threaten their recognition when applying for grants, seeking promotions or submitting papers to high-impact journals. We are not suggesting that traditional academic departments should be disbanded. On the contrary, they give the required depth to the research, whereas the interdisciplinary team gives breadth to the overall effort.
Our cluster proposal was a success, and in 2019 the National Center for Integrated Coastal Research (UCF Coastal) was born. Our goal is to guide more effective economic development, environmental stewardship, hazard-mitigation planning and public policy for coastal communities. To better integrate science with societal needs, we have brought together biologists, chemists, engineers and biomedical researchers with anthropologists, sociologists, political scientists, planners, emergency managers and economists. It seems that the most creative perspectives on old problems have arisen when people with different training and life experiences are talking through issues over cups of coffee. After all, “interdisciplinary” must mean more than just different flavors of STEM. In academia, tackling the effects of climate change demands more rigorous inclusion of the social sciences—an area that has been frequently overlooked.
The National Science Foundation, as well as other groups, has recently required that all research proposals incorporate a social sciences component, as an attempt to assess the broader implications of projects. Unfortunately, in many cases, simply adding a social scientist to a proposal is done only to check a box rather than to make a true commitment to allowing the discipline to inform a project. Instead social, economic and policy needs must be considered at the outset of research design, not as an afterthought. Otherwise our work might fail at the implementation stage, which means we are not being as effective as we could be in solving real-world problems. As a result, the public might become skeptical of how much scientists can contribute toward solutions.
Connecting with the Public
The reality is that communicating research findings to the public is an increasingly critical responsibility of scientists. Doing so has a measurable effect on how politicians prioritize policy, funding and regulations. UCF Coastal was brought into a world where science is not always respected—sometimes it is even portrayed as the enemy. There has been a significant erosion of trust in science over recent years, and we must work more deliberately to regain it. The public, we have found, wants to see quality academic research that is grounded in the societal challenges we are facing. That is why we are melding pure academic research with applied research to focus on issues that are immediate—helping a town or business recovering from Hurricane Irma, for example—as well as long term, such as directly advising a community how to build resiliency as flooding becomes more frequent.
As scientists, we cannot expect to explain the implications of our research to the wider public if we cannot first understand one another. A benefit of regularly working side by side is that we are crafting a common language, reconciling the radically different meanings that the same words can have to a variety of specialists. Finally, we are learning to speak to one another with more clarity and understand more explicitly how our niches fit into the bigger picture. We are also more aware of culture and industry as driving forces in shaping consensus and policy. Rather than handing city planners a stack of research papers and walking away, UCF Coastal sees itself as a collaborator that listens instead of just lecturing.
This style of academic mission is not only relevant to issues around climate change. It relates to every aspect of modern society, including genetic engineering, automation, artificial intelligence, and so on. The launch of UCF Coastal has garnered positive attention from industry, government agencies, local communities and academics. We think that is because people do want to come together to solve problems, but they need a better mechanism for doing so. We hope to be that conduit while inspiring other academic institutions to do the same.
After all, we have heard for years to “think globally, act locally,” and that “all politics is local.” Florida's Indian River Lagoon will be restored only if there is engagement among residents, local industries, academics, government agencies and nonprofit organizations. As scientists, it is our responsibility to help everyone involved understand that problems that took decades to create will take decades to fix. We need to present the most helpful solutions while explaining the intricacies of the trade-offs for each one. Doing so is only possible if we see ourselves as part of an interdisciplinary, whole-community approach. By listening and responding to fears and concerns, we can make a stronger case for why scientifically driven decisions will be more effective in the long run.